CONGRUENCE JUSTIFICATIONS

Triangle ABC is isosceles with main vertex A. If segments BD and CE are congruent, justify the statements proving that triangles ABD and ACE are congruent.

Hypothesis: $-\Delta ABC$ isosceles.

 $-\overline{BD}\cong \overline{CE}$.

Statement	Justification
1. ∠ABC ≅ ∠ACB	QABC is isocelese : LB : LC congret
2. ∠ABD ≅ ∠ACE	Supplementary to LB : LC
3. $\overline{AB} \cong \overline{AC}$	AABC :s isoculal
4. $\overline{\mathrm{BD}} \cong \overline{\mathrm{CE}}$	binen
5. $\triangle ABD \cong \triangle ACE$	SAS

Justify the steps proving the following property:
The opposite sides of a parallelogram are congruent.

Hypothesis: - ABCD is a parallelogram.

Consider triangles ABD and CDB.

Statement	Justification
1. ∠ADB≅∠DBC	
2. ∠ABD ≅ ∠BDC	
3. $\overline{BD} \cong \overline{BD}$	
4. $\triangle ABD \cong \triangle CDB$	
5. $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$	

Justify the following property of parallelograms: The opposite angles of a parallelogram are congruent.	A
	B C
	A D
Jusitfy the steps proving the following property: Consecutive angles of a parallelogram are supplementary.	B y
Let x and x represent the measures of angles A and B.	B 23.

Statement	Justification	
1. $m \angle A = m \angle C = x$	opposite < of a = an congran	
2. $m \angle B = m \angle D = y$	opposite & on a trave congress	
3. $m \angle A + m \angle B + m \angle C + m \angle D = 360^{\circ}$	All interior L's of a graduitation	
4. $2x + 2y = 360^{\circ}$	•/	
5. $x + y = 180^{\circ}$	adjacent sides in a greatifatival	
= (80)8		

Justify the steps proving the following property: The diagonals of a parallelogram bisect each other.

Hypothesis: - ABCD is a parallelogram.

Consider the triangles ADI and CBI.

Statement	Justification
1. ∠DAI ≅ ∠BCI	AIA alternate vilenion Anges
2. ∠ADB ≅ ∠DBC	AIA
3. $\overrightarrow{AD} \cong \overrightarrow{BC}$	opposite side of ZADCP are congress
4. $\triangle ADI \cong \triangle CBI$	ASA
5. $\overline{IA} \cong \overline{IC}$	(onesponding sides on anyment A
6. $\overline{IB} \cong \overline{ID}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

p 4 mes

In the parallelogram on the right, E and F are the respective midpoints of sides AD and BC. Justify the steps proving that triangles ABF and CDE are congruent.

Statement	Justification
1. $\overline{AB} \cong \overline{CD}$	opposite sides of a I are congresi
2. $\angle ABC \cong \angle ADC$	opposite < ox a It are conquent
3. $\overline{BF} \cong \overline{DE}$	AP = DC opposite sides of a ZT
	I : Frepresent Mid point
4. $\triangle ABF \cong \triangle CDE$	SAS

Two circles centered at 0 and 0' intersect each other at two points A and B. Justify the steps proving that angles 0A0' and 0B0' are congruent.

Hypothesis: – 0 and 0' are the centres of two distinct circles.

 A and B are the intersection points of the two circles.

Consider the triangles 0A0' and 0B0'.

Statement	Justification
1. $\overline{OA} \cong \overline{OB}$	OA F DB are radia in circle O
$2. \ \overline{0'A} \cong \overline{0'B}$	Stand Side of A ADD : ABDO
3. $\overline{00'} \cong \overline{00'}$ 4. $\Delta 0A0' \cong \Delta 0B0'$	555
5. ∠0A0′ ≅ ∠0B0′	Corresponding Angles in (organit)